论文标题
在具有不同适应性值的N-美洲树上的开放和增加路径
Open and increasing paths on N-ary trees with different fitness values
论文作者
论文摘要
考虑一棵生根的n- ary树。对于这棵树的每个顶点,我们都会遇到I.I.D. Bernoulli随机变量。如果路径上分配的所有随机变量为1,则称为“路径”。我们考虑限制从根到叶子和最长开放路径的开放路径数量的限制行为。另外,当所有健身值均为I.I.D.连续的随机变量,证明了最长增加路径的某些渐近特性。
Consider a rooted N-ary tree. For every vertex of this tree, we atttach an i.i.d. Bernoulli random variable. A path is called open if all the random variables that are assigned on the path are 1. We consider limiting behaviors for the number of open paths from the root to leaves and the longest open path. In addition, when all fitness values are i.i.d. continuous random variables, some asymptotic properties of the longest increasing path are proved.