论文标题
拉普拉斯的特征值分布,直径和统治树木
Laplacian eigenvalue distribution, diameter and domination number of trees
论文作者
论文摘要
对于图形$ g $,具有统治数量$γ$,Hedetniemi,Hedetniemi,Jacobs和Trevisan [欧洲组合学杂志53(2016)66-71]证明,$ m_ {g} [0,1)\ leqleqγ$,其中$ m_ {g} $ $ gen $ gen $ genval in l laplacian gen laplacian gen laplacian gen laplacian gen laplace in laplacian of laplacian of laplacian of laplacian $ [0,1)$。令$ t $是直径$ d $的树。在本文中,我们表明$ m_ {t} [0,1)\ geq(d+1)/3 $。但是,对于一般图,这样的下限是错误的。所有实现下限的树木都完全表征。此外,对于树$ t $,我们通过表明$ t $的支配数等于$(d+1)/3 $,并且仅当它具有$(d+1)/3 $ laplacian eigenvalues时,我们就建立了laplacian特征值,直径和支配数量之间的关系。作为一种应用,它还提供了一种新型的树木,它显示了由于Hedetniemi,Jacobs和Trevisan引起的不平等的清晰度。
For a graph $G$ with domination number $γ$, Hedetniemi, Jacobs and Trevisan [European Journal of Combinatorics 53 (2016) 66-71] proved that $m_{G}[0,1)\leq γ$, where $m_{G}[0,1)$ means the number of Laplacian eigenvalues of $G$ in the interval $[0,1)$. Let $T$ be a tree with diameter $d$. In this paper, we show that $m_{T}[0,1)\geq (d+1)/3$. However, such a lower bound is false for general graphs. All trees achieving the lower bound are completely characterized. Moreover, for a tree $T$, we establish a relation between the Laplacian eigenvalues, the diameter and the domination number by showing that the domination number of $T$ is equal to $(d+1)/3$ if and only if it has exactly $(d+1)/3$ Laplacian eigenvalues less than one. As an application, it also provides a new type of trees, which show the sharpness of an inequality due to Hedetniemi, Jacobs and Trevisan.