论文标题
周期性线性系统,庞加罗球和准植物系统的可控性
Controllability of periodic linear systems, the Poincare sphere, and quasi-affine systems
论文作者
论文摘要
对于具有有界控制范围的周期性线性控制系统,通过将阶段添加到系统状态来介绍一个自治系统。这里存在一个独特的控制集(即具有非流体内部的最大近似可控性集)。它是由均匀部分的光谱子空间确定的,该部分是周期性线性微分方程。使用Poincaré球,一个人获得了状态空间的压实,使我们能够描述原始控制系统无穷大的行为。此外,准蛋白系统的应用产生了一个独特的控制装置,该控制设置具有非漏体内饰。
For periodic linear control systems with bounded control range, an autonomized system is introduced by adding the phase to the state of the system. Here a unique control set (i.e., a maximal set of approximate controllability) with nonvoid interior exists. It is determined by the spectral subspaces of the homogeneous part which is a periodic linear differential equation. Using the Poincaré sphere one obtains a compactification of the state space allowing us to describe the behavior near infinity of the original control system. Furthermore, an application to quasi-affine systems yields a unique control set with nonvoid interior.