论文标题

注意边缘:少量监督的单眼估计中的精炼深度边缘

Mind The Edge: Refining Depth Edges in Sparsely-Supervised Monocular Depth Estimation

论文作者

Talker, Lior, Cohen, Aviad, Yosef, Erez, Dana, Alexandra, Dinerstein, Michael

论文摘要

单眼深度估计(MDE)是计算机视觉中的一个基本问题。最近,在室外场景中,激光监督的方法已经达到了明显的每像素深度精度。但是,通常在深度不连续性(即深度边缘)的接近度中发现了重大错误,这通常会阻碍对这种不准确性敏感的深度依赖性应用的性能,例如新型视图合成和增强现实。由于基于稀疏的激光雷达场景中,对深度边缘位置的直接监督通常不可用,因此鼓励MDE模型产生正确的深度边缘并不直接。据我们所知,本文是第一次尝试解决LIDAR参观场景的深度边缘问题。在这项工作中,我们建议学习从密集于监督的合成数据中检测深度边缘的位置,并使用它来为MDE培训中的深度边缘产生监督。为了定量评估我们的方法,并且由于基于激光雷达的场景缺乏深度边缘GT,我们手动注释了Kitti的子集和具有深度边缘地面真相的DDAD数据集。我们证明了深度边缘的准确性显着提高,并且在几个具有挑战性的数据集上具有可比的人均深度精度。代码和数据集可在\ url {https://github.com/liortalker/mindtheedge}上找到。

Monocular Depth Estimation (MDE) is a fundamental problem in computer vision with numerous applications. Recently, LIDAR-supervised methods have achieved remarkable per-pixel depth accuracy in outdoor scenes. However, significant errors are typically found in the proximity of depth discontinuities, i.e., depth edges, which often hinder the performance of depth-dependent applications that are sensitive to such inaccuracies, e.g., novel view synthesis and augmented reality. Since direct supervision for the location of depth edges is typically unavailable in sparse LIDAR-based scenes, encouraging the MDE model to produce correct depth edges is not straightforward. To the best of our knowledge this paper is the first attempt to address the depth edges issue for LIDAR-supervised scenes. In this work we propose to learn to detect the location of depth edges from densely-supervised synthetic data, and use it to generate supervision for the depth edges in the MDE training. To quantitatively evaluate our approach, and due to the lack of depth edges GT in LIDAR-based scenes, we manually annotated subsets of the KITTI and the DDAD datasets with depth edges ground truth. We demonstrate significant gains in the accuracy of the depth edges with comparable per-pixel depth accuracy on several challenging datasets. Code and datasets are available at \url{https://github.com/liortalker/MindTheEdge}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源