论文标题
关于行的强度偏移等效性,排行榜和C*-代数
On strong shift equivalence for row-finite graphs and C*-algebras
论文作者
论文摘要
该注释扩展并加强了贝茨定理,该定理说,强移等效的行芬特图具有莫里塔等效图C* - 代数。这使我们能够询问我们对莫里塔对等的更强烈的概念实际上确实是强烈的转变等效性的特征。我们认为,这将与对无限图及其C*代数的未来研究有关。我们还将隔离和卸载作为强偏移等效的特定例子,并表明诱发的莫里塔等同尊重整个加权量规动作。然后,我们询问是否通过(广义)隔离和出境产生强大的变化对等。
This note extends and strengthens a theorem of Bates that says that row-finite graphs that are strong shift equivalent have Morita equivalent graph C*-algebras. This allows us to ask whether our stronger notion of Morita equivalence does in fact characterise strong shift equivalence. We believe this will be relevant for future research on infinite graphs and their C*-algebras. We also study insplits and outsplits as particular examples of strong shift equivalences and show that the induced Morita equivalences respect a whole family of weighted gauge actions. We then ask whether strong shift equivalence is generated by (generalised) insplits and outsplits.