论文标题

学习点云几何压缩的神经体积场

Learning Neural Volumetric Field for Point Cloud Geometry Compression

论文作者

Hu, Yueyu, Wang, Yao

论文摘要

由于多样化的稀疏性,高维度和动态点云的较大时间变化,设计有效的点云压缩方法仍然是一个挑战。我们建议通过学习神经体积字段来编码给定点云的几何形状。我们将整个空间划分为小立方体,而不是使用单个过度拟合网络来表示整个点云,并通过神经网络和输入潜在代码表示每个非空置立方体。该网络在单个帧或多个帧中共享所有立方体之间,以利用空间和时间冗余。点云的神经字段表示包括网络参数和所有潜在代码,这些代码是通过对网络参数及其输入的反向传播生成的。通过考虑网络参数的熵和潜在代码的熵以及损耗函数中原始立方体和重建立方之间的失真,我们将得出一个速率降低(R-D)最佳表示。实验结果表明,与基于OCTREE的G-PCC相比,所提出的编码方案可实现出色的R-D性能,尤其是应用于点云视频的多个帧时。该代码可在https://github.com/huzi96/nvfpcc/上找到。

Due to the diverse sparsity, high dimensionality, and large temporal variation of dynamic point clouds, it remains a challenge to design an efficient point cloud compression method. We propose to code the geometry of a given point cloud by learning a neural volumetric field. Instead of representing the entire point cloud using a single overfit network, we divide the entire space into small cubes and represent each non-empty cube by a neural network and an input latent code. The network is shared among all the cubes in a single frame or multiple frames, to exploit the spatial and temporal redundancy. The neural field representation of the point cloud includes the network parameters and all the latent codes, which are generated by using back-propagation over the network parameters and its input. By considering the entropy of the network parameters and the latent codes as well as the distortion between the original and reconstructed cubes in the loss function, we derive a rate-distortion (R-D) optimal representation. Experimental results show that the proposed coding scheme achieves superior R-D performances compared to the octree-based G-PCC, especially when applied to multiple frames of a point cloud video. The code is available at https://github.com/huzi96/NVFPCC/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源