论文标题
调制解调器:通过演示加速基于视觉模型的增强学习
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
论文作者
论文摘要
样本效率较差仍然是用于现实世界应用,尤其是视觉运动控制的深入加固学习(RL)算法的主要挑战。基于模型的RL有可能通过同时学习世界模型并使用合成推广来计划和政策改进,从而有可能提高样本的效率。但是,在实践中,探索挑战的瓶颈瓶颈是基于模型的RL的样品学习。在这项工作中,我们发现仅利用少数演示可以显着提高基于模型的RL的样本效率。但是,仅将演示附加到交互数据集中就不够。我们确定在模型学习中利用演示的关键要素 - 策略预处理,有针对性的探索和演示数据的过采样 - 构成了我们基于模型的RL框架的三个阶段。我们经验研究了三个复杂的视觉运动控制域,发现我们的方法在完成稀疏奖励任务任务方面的成功率是150%-250%,与低数据制度(100K交互步骤,5个演示)相比,我们的方法在完成稀疏的奖励任务方面的成功率高。代码和视频可在以下网址找到:https://nicklashansen.github.io/modemrl
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl