论文标题

关于分数$的广义特征值问题(P,Q)$ - 带有两个参数的拉普拉斯操作员

On generalized eigenvalue problems of fractional $(p,q)$-Laplace operator with two parameters

论文作者

Biswas, Nirjan, Sk, Firoj

论文摘要

对于$ s_1,s_2 \ in(0,1)$和$ p,q \ in(1,\ infty)$,我们研究了参数$α,β\ in \ mathbb {r} $驱动的两个非linelear eigenvalue问题$α,β\ in \ mathbb {r} \ begin {equation*} (-Δ)^{s_1} _p u+( - δ)^{s_2} _q u =α| u | u |^{p-2} u+β| U | u |^{q-2} q-2} u \; \; \; \ \ \ \ \ \ \ \ \ text {in}ω, ω,\ \ \ \ \ qquad \ quad \ m马理{(p)} \ end {equation*}其中$ω\ subset \ mathbb {r}^d $是一个有限的开放集。根据$α,β$的值,我们完全描述了(p)阳性溶液的存在和不存在。我们在二维$(α,β)$ - 平面中构造连续阈值曲线,该平面分离了阳性溶液的存在区域和不存在的区域。此外,我们证明了$ p $ laplace和分数$ q $ -laplace运营商是线性独立的,这在曲线的形成中起着至关重要的作用。此外,我们确定(p)的每个非负解决方案都是全球界限的。

For $s_1,s_2\in(0,1)$ and $p,q \in (1, \infty)$, we study the following nonlinear Dirichlet eigenvalue problem with parameters $α, β\in \mathbb{R}$ driven by the sum of two nonlocal operators: \begin{equation*} (-Δ)^{s_1}_p u+(-Δ)^{s_2}_q u=α|u|^{p-2}u+β|u|^{q-2}u\;\;\text{in }Ω, \quad u=0\;\;\text{in } \mathbb{R}^d \setminus Ω, \ \ \ \qquad \quad \mathrm{(P)} \end{equation*} where $Ω\subset \mathbb{R}^d$ is a bounded open set. Depending on the values of $α,β$, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(α, β)$-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$-Laplace and fractional $q$-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源