论文标题
在身份$ f = x^{n} $生成的$ t $ -IDEAL上
On the $T$-ideal generated by the identity $f=x^{n}$
论文作者
论文摘要
Let $V_{n+K}=V_{n+K}\left(x_{1},...,x_{n+K}\right)$ denote the vector space of all multilinear polynomials in $x_{1},...,x_{n+K}$ over $\mathbb{F},$ a field of characteristic zero.在本文中,我们研究了$ s_ {n+k} $ - 模块$ w_ {n,n+k} = \ left(x^{n} \ right)^{t} \ cap v_ {n+k} $,其中的结构$ \ left(x^{n} \ right)^{t} \ triangleleft \ mathbb {f} \ left \ langle x_ {1},x_ {2},... \ right \ rangle $是$ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ f = x^n} $ f = x^$ f = x^n}
Let $V_{n+K}=V_{n+K}\left(x_{1},...,x_{n+K}\right)$ denote the vector space of all multilinear polynomials in $x_{1},...,x_{n+K}$ over $\mathbb{F},$ a field of characteristic zero. In this paper we investigate the structure of the $S_{n+K}$-module $W_{n,n+K}=\left(x^{n}\right)^{T}\cap V_{n+K}$, where $\left(x^{n}\right)^{T}\triangleleft\mathbb{F}\left\langle x_{1},x_{2},...\right\rangle $ is the $T$-ideal generated by the identity $f=x^{n}.$