论文标题
无序Chern绝缘子的拓扑量子临界
Topological quantum criticality of the disordered Chern insulator
论文作者
论文摘要
我们认为在存在静态疾病的情况下,我们考虑了二维拓扑结构绝缘子。该系统中的通用量子状态是安德森本地化的。但是,拓扑需要存在一部分关键状态,并具有不同的定位长度(Chern绝缘子的类似物(Chern绝缘子的类似物)的“量子霍尔绝缘体的Landau带状态中心”。)我们讨论了识别这些状态在弱小的障碍处的几何标准,以及通过分析方法扩展到强度障碍方案。通过这种方式,我们绘制了一个临界表面,该表面嵌入了能量,拓扑控制参数和无序强度跨越的相空间中。我们的分析预测通过对关键状态的位置及其多重分子特性的数值分析来补充。
We consider the two-dimensional topological Chern insulator in the presence of static disorder. Generic quantum states in this system are Anderson localized. However, topology requires the presence of a subset of critical states, with diverging localization length (the Chern insulator analog of the `center of the Landau band states' of the quantum Hall insulator.) We discuss geometric criteria for the identification of these states at weak disorder, and their extension into the regime of strong disorder by analytical methods. In this way, we chart a critical surface embedded in a phase space spanned by energy, topological control parameter, and disorder strength. Our analytical predictions are supplemented by a numerical analysis of the position of the critical states, and their multifractal properties.