论文标题

通过有限的W-Algebras进行减少

Reduction by stages for finite W-algebras

论文作者

Genra, Naoki, Juillard, Thibault

论文摘要

令$ \ mathfrak {g} $为简单的谎言代数:其双空间$ \ mathfrak {g}^*$是泊松品种。众所周知,对于$ \ mathfrak {g} $中的每个nilpotent元素$ f $,可以通过汉密尔顿还原构建一种新的泊松结构,这与$ \ mathfrak {g}^*$的某种亚变量是同构的,Slodowy slice slice slice $ s_f $。给定两个nilpotent元素$ f_1 $和$ f_2 $带有某些兼容性假设,我们通过阶段证明汉密尔顿的减少:slice $ s_ {f_2} $是汉密尔顿的减少slice $ s_ $ s_s_ {f_1} $。我们还在有限的W-偏骨架的设置中陈述了类似的结果,该量子是slos的slices片的量化。这些结果是由摩根在他的博士学位论文中猜想的。作为A型推论,我们证明可以从任何其他挂钩型中获得任何挂钩型W-Algebra。作为应用程序,我们建立了史学他的等效性的概括。最后,我们在仿射W-Algebras的背景下做出了一些猜想。

Let $\mathfrak{g}$ be a simple Lie algebra: its dual space $\mathfrak{g}^*$ is a Poisson variety. It is well known that for each nilpotent element $f$ in $\mathfrak{g}$, it is possible to construct a new Poisson structure by Hamiltonian reduction which is isomorphic to some subvariety of $\mathfrak{g}^*$, the Slodowy slice $S_f$. Given two nilpotent elements $f_1$ and $f_2$ with some compatibility assumptions, we prove Hamiltonian reduction by stages: the slice $S_{f_2}$ is the Hamiltonian reduction of the slice $S_{f_1}$. We also state an analogous result in the setting of finite W-algebras, which are quantizations of Slodowy slices. These results were conjectured by Morgan in his PhD thesis. As corollary in type A, we prove that any hook-type W-algebra can be obtained as Hamiltonian reduction from any other hook-type one. As an application, we establish a generalization of the Skryabin equivalence. Finally, we make some conjectures in the context of affine W-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源