论文标题

拉丁正方形,施泰纳三重系统和边缘色的最佳阈值

Optimal thresholds for Latin squares, Steiner Triple Systems, and edge colorings

论文作者

Jain, Vishesh, Pham, Huy Tuan

论文摘要

我们表明,包含拉丁正方形的二项式随机$ 3 $ - 明确的阈值,$ 3 $ - 均匀的超图$ g^{3}((n,n,n,n),p)$是$θ(\ log {n}/n)$。我们还证明了Steiner Triple Systems的类似结果和完整(两部分)图的正确列表边彩色,并带有随机列表。我们的结果回答了Johansson,Luria-Simkin,Casselgren-Häggkvist,Simkin和Kang-Kelly-kühn-Methuku-Osthus的几个相关问题。

We show that the threshold for the binomial random $3$-partite, $3$-uniform hypergraph $G^{3}((n,n,n),p)$ to contain a Latin square is $Θ(\log{n}/n)$. We also prove analogous results for Steiner triple systems and proper list edge-colorings of the complete (bipartite) graph with random lists. Our results answer several related questions of Johansson, Luria-Simkin, Casselgren-Häggkvist, Simkin, and Kang-Kelly-Kühn-Methuku-Osthus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源