论文标题
关于卢卡斯序列的外观索引
On the index of appearance of a Lucas sequence
论文作者
论文摘要
令$ \ mathbf {u} =(u_n)_ {n \ geq 0} $为lucas序列,也就是说,满足$ u_0 = 0 $,$ u_1 = 1 $的整数序列$ a_1 $和$ a_2 $是固定的非零整数。对于每个素数$ p $,带有$ p \ nmid 2a_2d _ {\ mathbf {u}} $,其中$ d _ {\ mathbf {u}}:= = a_1^2 + 4a_2 $,$ d + 4a_2 $,$ p _ {\ mathbf {u}} $ s $ semp of speck也就是说,最小的正整数$ k $,使得$ p \ mid u_k $。众所周知,存在$ρ_ {\ mathbf {u}}(p)$存在,并且$ p \ equiv \ big(d _ {\ mathbf {u}} \ mid p \ big)\ big)\ pmod {ρ_ $ \ big(d _ {\ mathbf {u}} \ mid p \ big)$是legendre符号。将$ p $在$ \ MathBf {U}中的外观定义为$ _ {\ MathBf {u}}}(p):= \ left(p- \ big(d _ {\ MathBf {u}}} \ mid p \ big)对于每个积极的整数$ t $,对于每$ x> 0 $,让$ \ Mathcal {p} _ {\ MathBf {u}}}(t,x)$是质数$ p $的集合,以便$ p \ leq x $,$ p \ leq x $,$ p \ nmid 2a_2 d _2 d _2 d _ { $ | _ {\ Mathbf {u}}(p)= t $。在广义的Riemann假设下,在$ \ Mathbf {U} $上的一些温和假设下,我们证明\ begin {equation {equation*} \#\ Mathcal {p} _ {\ MathBf {u}}(t,x)= a \,f _ {\ Mathbf {u}}}(t)\,g _ {\ Mathbf { o _ {\ MathBf {u}} \!\ left(\ frac {x} {(\ log x)^2} + \ frac {x \ log(2 \ log x)} {φ(φ(T)(\ log x)^2} \ right) $ a $是artin常数,$ f _ {\ mathbf {u}}(\ cdot)$是乘法函数,而$ g _ {\ mathbf {u}}(\ cdot)$是一个周期函数(这两个函数都可以在$ \ mathbf {u} $中有效地计算。此外,我们提供了一些明确的示例和数值数据。
Let $\mathbf{u} = (u_n)_{n \geq 0}$ be a Lucas sequence, that is, a sequence of integers satisfying $u_0 = 0$, $u_1 = 1$, and $u_n = a_1 u_{n - 1} + a_2 u_{n - 2}$ for every integer $n \geq 2$, where $a_1$ and $a_2$ are fixed nonzero integers. For each prime number $p$ with $p \nmid 2a_2D_{\mathbf{u}}$, where $D_{\mathbf{u}} := a_1^2 + 4a_2$, let $ρ_{\mathbf{u}}(p)$ be the rank of appearance of $p$ in $\mathbf{u}$, that is, the smallest positive integer $k$ such that $p \mid u_k$. It is well known that $ρ_{\mathbf{u}}(p)$ exists and that $p \equiv \big(D_{\mathbf{u}} \mid p \big) \pmod {ρ_{\mathbf{u}}(p)}$, where $\big(D_{\mathbf{u}} \mid p \big)$ is the Legendre symbol. Define the index of appearance of $p$ in $\mathbf{u}$ as $ι_{\mathbf{u}}(p) := \left(p - \big(D_{\mathbf{u}} \mid p \big)\right) / ρ_{\mathbf{u}}(p)$. For each positive integer $t$ and for every $x > 0$, let $\mathcal{P}_{\mathbf{u}}(t, x)$ be the set of prime numbers $p$ such that $p \leq x$, $p \nmid 2a_2 D_{\mathbf{u}}$, and $ι_{\mathbf{u}}(p) = t$. Under the Generalized Riemann Hypothesis, and under some mild assumptions on $\mathbf{u}$, we prove that \begin{equation*} \#\mathcal{P}_{\mathbf{u}}(t, x) = A\, F_{\mathbf{u}}(t) \, G_{\mathbf{u}}(t) \, \frac{x}{\log x} + O_{\mathbf{u}}\!\left(\frac{x}{(\log x)^2} + \frac{x \log (2\log x)}{φ(t) (\log x)^2}\right) , \end{equation*} for all positive integers $t$ and for all $x > t^3$, where $A$ is the Artin constant, $F_{\mathbf{u}}(\cdot)$ is a multiplicative function, and $G_{\mathbf{u}}(\cdot)$ is a periodic function (both these functions are effectively computable in terms of $\mathbf{u}$). Furthermore, we provide some explicit examples and numerical data.