论文标题

使用局部分子轨道在时间依赖性密度功能理论中表征激发态的表征

Characterization of Excited States in Time-Dependent Density Functional Theory Using Localized Molecular Orbitals

论文作者

Sen, Souloke, Senjean, Bruno, Visscher, Lucas

论文摘要

局部分子轨道通常用于化学键的分析,但它们也可以有效,可理解地计算线性响应特性。尽管常规规范的分子轨道为激发态提供了足够的基础,但在这种离域轨道的基础上,很难对不同激发态过程的化学有意义的鉴定。在这项工作中,从一组初始分子的规范分子轨道开始,我们提供了一个简单的单步上下嵌入过程,用于生成一组根据超级分子而定位的轨道,但在每个子系统上都在每个子系统上构成了超级分子。使用基于此类局部轨道的轨道分配方案,我们进一步介绍了在时间依赖性密度功能理论(TDDFT)的线性响应框架内构建局部激发和电荷转移状态的程序。该过程可直接访问近似的绝生刺激能,在tamm-dancoff近似下,也可以直接访问其相应的电子耦合 - 在复杂生物系统中对能量传递过程进行建模时至关重要的数量。我们的方法与最近开发的糖化程序基于基于子系统TDDFT的糖尿病化程序,使用投影操作员,这导致了一组类似的工作方程。尽管这两种方法在所采用的一般本地化策略和使用的基础功能的类型(Slaters vs. Gaussians)方面有所不同,但仍获得了整体同意。

Localized molecular orbitals are often used for the analysis of chemical bonds, but they can also serve to efficiently and comprehensibly compute linear response properties. While conventional canonical molecular orbitals provide an adequate basis for the treatment of excited states, a chemically meaningful identification of the different excited-state processes is difficult within such a delocalized orbital basis. In this work, starting from an initial set of supermolecular canonical molecular orbitals, we provide a simple one-step top-down embedding procedure for generating a set of orbitals which are localized in terms of the supermolecule, but delocalized over each subsystem composing the supermolecule. Using an orbital partitioning scheme based on such sets of localized orbitals, we further present a procedure for the construction of local excitations and charge-transfer states within the linear response framework of time-dependent density functional theory (TDDFT). This procedure provides direct access to approximate diabatic excitation energies and, under the Tamm--Dancoff approximation, also their corresponding electronic couplings -- quantities that are of primary importance in modelling energy transfer processes in complex biological systems. Our approach is compared with a recently developed diabatization procedure based on subsystem TDDFT using projection operators, which leads to a similar set of working equations. Although both of these methods differ in the general localization strategies adopted and the type of basis functions (Slaters vs. Gaussians) employed, an overall decent agreement is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源