论文标题

非构造的Bivariant K理论

Nonarchimedean bivariant K-theory

论文作者

Mukherjee, Devarshi

论文摘要

我们在一个完整的离散估值环$ v $上引入了非一切集的Bornologicy代数的双变量K理论。这是匕首同型不变,术中稳定和兴奋剂函数的通用目标,类似于本地凸拓扑$ \ mathbb {c} $的双变量K理论 - 代数和代数双向k理论。当第一个变量是地面代数$ v $时,我们将获得Weibel同型代数K理论的版本,我们称之为\ textit {稳定过度conterized conconvergent conconvertent concontergent concontertic kheyore}。由此产生的分析K理论满足了匕首同质的不变性,通过完整的矩阵代数和切除来满足稳定性。

We introduce bivariant K-theory for nonarchimedean bornological algebras over a complete discrete valuation ring $V$. This is the universal target for dagger homotopy invariant, matricially stable and excisive functors, similar to bivariant K-theory for locally convex topological $\mathbb{C}$-algebras and algebraic bivariant K-theory. When the first variable is the ground algebra $V$, we get a version of Weibel's homotopy algebraic K-theory, which we call \textit{stabilised overconvergent analytic K-theory}. The resulting analytic K-theory satisfies dagger homotopy invariance, stability by completed matrix algebras, and excision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源