论文标题
完全可迁移的组的内态和弗雷切特空间上线性操作员的混乱
Chaos for endomorphisms of completely metrizable groups and linear operators on Fréchet spaces
论文作者
论文摘要
使用拓扑动力学的一些技术,我们对李 - 尤克混乱,平均李 - 尤克混乱和分布混乱进行了统一的处理,以使完全可转移的群体的连续内态性,并以三种混乱(分别混乱(sives temery Chaos)的存在,都以所谓的半度性ir量指数(erigrorgular renforcular forsecrultimallimultion)的存在。我们展示了波兰人群体内部自动形态的一些例子,以说明结果。我们还将结果应用于Fréchet空间上连续线性算子的混乱理论,从而改善了文献中的一些结果。
Using some techniques from topological dynamics, we give a uniform treatment of Li-Yorke chaos, mean Li-Yorke chaos and distributional chaos for continuous endomorphisms of completely metrizable groups, and characterize three kinds of chaos (resp. extreme chaos) in terms of the existence of the so-called semi-irregular points (resp. irregular points). We exhibit some examples of inner automorphisms of Polish groups to illustrate the results. We also apply our results to the chaos theory of continuous linear operators on Fréchet spaces, which improves some results in the literature.