论文标题
在Navier-Stokes-Cahn-Hilliard系统上,用于粘性不可压缩的两相流,具有趋化性,主动运输和反应
On a Navier-Stokes-Cahn-Hilliard System for Viscous Incompressible Two-phase Flows with Chemotaxis, Active Transport and Reaction
论文作者
论文摘要
我们分析了粘液不可压缩的两相流量的Navier-Stokes-Cahn-Hilliard模型,其中考虑了趋化性,主动转运和反应的机理。进化系统融合了用于体积平均流体速度的Navier-Stokes方程,对流式变量的对流Cahn-Hilliard方程以及某些化学物质密度的对流扩散方程。该系统在热力学上是一致的,并概括了粘性不可压缩的二元流体的众所周知的``模型h''。对于一般有限的平滑域$ω\ subset \ mathbb {r}^3 $中具有物理相关的奇异电位的初始有限值问题,我们首先证明了局部强解决方案的存在和独特性。当初始速度很小,并且初始相位功能以及初始化学密度是自由能局部最小化器的小扰动时,我们确定了独特的全局强溶液的存在。之后,随着时间的流逝,我们显示了任何全球强解决方案的渐近极限的唯一性,并提供了对收敛速率的估计。全球良好性和长期行为的证明是基于系统的耗散结构和lojasiewicz-simon方法。我们的分析揭示了趋化性,主动转运和OONO类型对耦合系统全局动力学的远程相互作用的影响。
We analyze a Navier-Stokes-Cahn-Hilliard model for viscous incompressible two-phase flows where the mechanisms of chemotaxis, active transport and reaction are taken into account. The evolution system couples the Navier-Stokes equations for the volume-averaged fluid velocity, a convective Cahn-Hilliard equation for the phase-field variable, and an advection-diffusion equation for the density of certain chemical substance. This system is thermodynamically consistent and generalizes the well-known ``Model H'' for viscous incompressible binary fluids. For the initial-boundary value problem with a physically relevant singular potential in a general bounded smooth domain $Ω\subset \mathbb{R}^3$, we first prove the existence and uniqueness of a local strong solution. When the initial velocity is small and the initial phase-field function as well as the initial chemical density are small perturbations of a local minimizer of the free energy, we establish the existence of a unique global strong solution. Afterwards, we show the uniqueness of asymptotic limit for any global strong solution as time goes to infinity and provide an estimate on the convergence rate. The proofs for global well-posedness and long-time behavior are based on the dissipative structure of the system and the Lojasiewicz-Simon approach. Our analysis reveals the effects of chemotaxis, active transport and a long-range interaction of Oono's type on the global dynamics of the coupled system.