论文标题
预测MOOC视频消费的知识收益
Predicting Knowledge Gain for MOOC Video Consumption
论文作者
论文摘要
近年来,使用搜索引擎以及在MOOC平台上进行更结构化的学习在网络上的非正式学习变得非常流行。由于大量可用的学习资源,智能检索和建议方法是必不可少的 - 对于MOOC视频而言,这也是如此。但是,关于预测(潜在)知识收益的自动评估尚未得到以前的工作。在本文中,我们调查了MOOC视频消费使用1)涵盖幻灯片和语音内容的多模式功能以及2)描述视频内容的广泛基于文本的功能是否可以预测学习成功。在全面的实验环境中,我们测试了四个不同的分类器和各种特征子集组合。我们进行了详细的特征重要性分析,以获取洞察力,其中形态有益于知识最大的预测。
Informal learning on the Web using search engines as well as more structured learning on MOOC platforms have become very popular in recent years. As a result of the vast amount of available learning resources, intelligent retrieval and recommendation methods are indispensable -- this is true also for MOOC videos. However, the automatic assessment of this content with regard to predicting (potential) knowledge gain has not been addressed by previous work yet. In this paper, we investigate whether we can predict learning success after MOOC video consumption using 1) multimodal features covering slide and speech content, and 2) a wide range of text-based features describing the content of the video. In a comprehensive experimental setting, we test four different classifiers and various feature subset combinations. We conduct a detailed feature importance analysis to gain insights in which modality benefits knowledge gain prediction the most.