论文标题

$ bi_2sr_2ca_ {n-1}的状态结构和方程

Structure and equation of state of $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4+δ}$ from x-ray diffraction to megabar pressures

论文作者

Mark, Alexander C., Ahart, Muhtar, Kumar, Ravhi, Park, Changyong, Meng, Yue, Popov, Dmitry, Deng, Liangzi, Chu, Ching-Wu, Campuzano, Juan Carlos, Hemley, Russell J.

论文摘要

压力是用于探测材料特性的独特调整参数,并且对于电子材料(例如高温铜层超导体)的研究特别有用。在这里,我们报告了霓虹灯压中产生的准热静力压缩的影响,对基于二晶型的高$ \ mathit {t_c} $ cuprate超导体的结构,其标称成分$ bi_2sr_2ca_ {n-1} cu_no_}通过同步X射线衍射获得的所有三个组合物的结构可以描述为在研究的整个压力范围内。我们表明,先前报道的压力引起的扭曲和结构变化是由非静压应力在这些分层材料中诱导的大型菌株引起的。在研究的压力范围内,在这些准静态条件下测得的状态(EOS)的压力体积方程不适合单个现象学配方,从20 GPA以下开始。 $ bi_2sr_2ca__ {n-1} cu_no_ {2n+4+δ} $对偏压压力的$ _2SR_2CA__ {n-1}的固有异常压缩以及对偏压压力的灵敏度为这些材料报告的EOS参数所报告的众多不一致所涉及的解释提供了解释。我们得出的结论是,所有三个组合物的异常压缩行为是电子特性的变化的表现,这些变化也导致了压力的$ \ Mathit {t_c} $的显着非单调依赖性,包括$ \ MATHIT {T_C} $增加的最高压力在每个人中所研究的最高压力。需要充分表征和探索这些材料中可能更高的临界温度,需要达到巨大压力的运输和光谱测量。

Pressure is a unique tuning parameter for probing the properties of materials and has been particularly useful for studies of electronic materials such as high-temperature cuprate superconductors. Here we report the effects of quasi-hydrostatic compression produced by a neon pressure-medium on the structures of bismuth-based high $\mathit{T_c}$ cuprate superconductors with the nominal composition $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4+δ}$ (n=1,2,3) up to 155 GPa. The structures of all three compositions obtained by synchrotron X-ray diffraction can be described as pseudo-tetragonal over the entire pressure range studied. We show that previously reported pressure-induced distortions and structural changes arise from the large strains that can be induced in these layered materials by non-hydrostatic stresses. The pressure-volume equations of state (EOS) measured under these quasi-hydrostatic conditions cannot be fit to single phenomenological formulation over the pressure ranges studied, starting below 20 GPa. This intrinsic anomalous compression as well as the sensitivity of $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4+δ}$ to deviatoric stresses provides explanations for the numerous inconsistencies in reported EOS parameters for these materials. We conclude that the anomalous compressional behavior of all three compositions is a manifestation of the changes in electronic properties that are also responsible for the remarkable non-monotonic dependence of $\mathit{T_c}$ with pressure, including the increase in $\mathit{T_c}$ at the highest pressures studied so far for each. Transport and spectroscopic measurements up to megabar pressures are needed to fully characterize and explore still higher possible critical temperatures in these materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源