论文标题
直接测量Oort Cloud中的十分限大小的岩石材料
Direct measurement of decimeter-sized rocky material in the Oort cloud
论文作者
论文摘要
在巨型行星形成期间,绿色云被认为是冰冷的行星和长周期彗星(LPC)的来源。丰富的岩石无冰的身体是太阳系形成模型的关键诊断,因为它可以区分``大规模''和```巨大''和``'deple''proto-aster-asterodoid腰带方案,从而区分``proto-aster-asteroid belts belt spenacorios ofertangle''。在这里,我们报告了对逆行LPC轨道上的十分表大小($ \ sim2 $ kg)岩石流星的直接观察($ e \大约1.0 $,i = $ 121^{\ circ} $)。在飞行过程中,它的动态压力分裂,类似于火球掉落普通的软晶陨石。数值消融模型拟合会产生大量的密度和烧蚀特性,也与小行星酿酒素一致。我们估计影响地球从Oort云的岩石物体的通量为$ 1.08^{+2.81} _ { - 0.95} \ Mathrm {Meteoroids/10^6 km^2/yr} $至质量上限为10 g。这对应于$ \ sim6^{+13} _ { - 5} $ \%的$ \ sim6^{+13} $ \%的大量岩石流星,其中所有源自Oort云的对象中的所有对象中的所有对象都对这些质量产生了影响。我们的结果为基于迁移的太阳系形成的动力学模型提供了支持,该模型预测重要的岩石材料被植入了Oort云,这一结果未通过传统的太阳系形成模型来解释。
The Oort cloud is thought to be a reservoir of icy planetesimals and the source of long-period comets (LPCs) implanted from the outer Solar System during the time of giant planet formation. The abundance of rocky ice-free bodies is a key diagnostic of Solar System formation models as it can distinguish between ``massive" and ``depleted" proto-asteroid belt scenarios and thus disentangle competing planet formation models. Here we report a direct observation of a decimeter-sized ($\sim2$ kg) rocky meteoroid on a retrograde LPC orbit ($e \approx 1.0$, i = $121^{\circ}$). During its flight, it fragmented at dynamic pressures similar to fireballs dropping ordinary chondrite meteorites. A numerical ablation model fit produces bulk density and ablation properties also consistent with asteroidal meteoroids. We estimate the flux of rocky objects impacting Earth from the Oort cloud to be $1.08^{+2.81}_{-0.95} \mathrm{meteoroids/10^6 km^2/yr}$ to a mass limit of 10 g. This corresponds to an abundance of rocky meteoroids of $\sim6^{+13}_{-5}$\% of all objects originating in the Oort cloud and impacting Earth to these masses. Our result gives support to migration-based dynamical models of the formation of the Solar System which predict that significant rocky material is implanted in the Oort cloud, a result not explained by traditional Solar System formation models.