论文标题

Metapcic Wigner分布

Metaplectic Wigner distributions

论文作者

Giacchi, Gianluca

论文摘要

最近研究了Metaplic的Wigner分布作为经典Wigner分布的天然概括,并提供了开利的广泛的时频表示,从而利用了符号群的结构。这项工作是对元容器的调查及其在调制空间和伪差操作员的时频分析中的应用,这些主题都尚不清楚。我们还给出了一些新的结果,将Lieb的不确定性原理推广到所谓的矩阵Wigner分布,并在$ m^p_ {v_s}(\ m athbb {r}^d)上证明连续性$ m^{p'} _ {v _ { - s}}}(\ mathbb {r}^d)$。

Metaplectic Wigner distributions were recently investigated as natural generalizations of the classical Wigner distribution, and provide a wide class of time-frequency representations that exploits the structure of the symplectic group. This work serves as a survey on metaplectic Wigner distributions and their applications to the time-frequency analysis of modulation spaces and pseudodifferential operators, topics that are all still poorly understood. We also give some new results, generalizing Lieb's uncertainty principle to the so-called matrix Wigner distributions and proving the continuity on $M^p_{v_s}(\mathbb{R}^d)$ spaces of metaplectic pseudodifferential operators with symbols in $M^{p'}_{v_{-s}}(\mathbb{R}^d)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源