论文标题

在扩展O(2)模型中破坏对称性

Symmetry Breaking in an Extended-O(2) Model

论文作者

Hostetler, Leon, Sakai, Ryo, Zhang, Jin, Unmuth-Yockey, Judah, Bazavov, Alexei, Meurice, Yannick

论文摘要

通过尝试使用离散近似值的连续Abelian对称性量子模拟晶格模型的动机,我们考虑了一个扩展的O(2)模型,该模型与普通的O(2)模型不同,该模型通过显式对称性破坏项而不同。它的耦合允许在O(2)型号(零耦合)和$ Q $ - 状态时钟模型(无限耦合)之间平滑插值。在后一种情况下,也可以针对$ Q $的非整数值定义一个$ Q $ - 州时钟模型。因此,这种限制也可以被视为将普通的$ q $ state时钟模型与非全能$ q $的分析延续。在我们以前的工作中建立了无限耦合极限中扩展-O(2)模型的相图,在该工作中,对于非全能$ Q $,在低温下有二阶相变,在高温下有一个二阶相变。在这项工作中,我们使用Monte Carlo和Tensor方法以耦合的有限值研究了该模型。结果可能与可配置的Rydberg-Atom数组有关。

Motivated by attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we consider an extended-O(2) model that differs from the ordinary O(2) model by an explicit symmetry breaking term. Its coupling allows to smoothly interpolate between the O(2) model (zero coupling) and a $q$-state clock model (infinite coupling). In the latter case, a $q$-state clock model can also be defined for non-integer values of $q$. Thus, such a limit can also be considered as an analytic continuation of an ordinary $q$-state clock model to non-integer $q$. The phase diagram of the extended-O(2) model in the infinite coupling limit was established in our previous work, where it was shown that for non-integer $q$, there is a second-order phase transition at low temperature and a crossover at high temperature. In this work, we investigate the model at finite values of the coupling using Monte Carlo and tensor methods. The results may be relevant for configurable Rydberg-atom arrays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源