论文标题

最大未成年人和亚最大Pfaffians的增厚的局部共同体学模块的SOCLE学位

Socle degrees for local cohomology modules of thickenings of maximal minors and sub-maximal Pfaffians

论文作者

Li, Jiamin, Perlman, Michael

论文摘要

令$ s $为非方块通用矩阵或奇数偏斜的矩阵空间的多项式环,让$ i $是最大未成年人或$ \ operatatorname {pf} $的决定性理想,分别是亚Ximimail pffaffians的理想。我们使用通用线性群体的降文化和表示理论,我们扩展基于Raicu-Weyman-witt的工作,以确定$ s $ s-module结构的$ \ operatatOrName {ext}^j_s(s/i^t,s/i^t,s)$和$ \ operatateName {ext}这些$ \ operatorname {ext} $模块的发电机。结果,通过分级的本地二元性,我们回答了Wenliang Zhang在形式的本地共同体学模块的Socle学位上的问题,$ h^j_ \ mathfrak {m}(s/i^t)$。

Let $S$ be the polynomial ring on the space of non-square generic matrices or the space of odd-sized skew-symmetric matrices, and let $I$ be the determinantal ideal of maximal minors or $\operatorname{Pf}$ the ideal of sub-maximal Pfaffians, respectively. Using desingularizations and representation theory of the general linear group we expand upon work of Raicu--Weyman--Witt to determine the $S$-module structures of $\operatorname{Ext}^j_S(S/I^t, S)$ and $\operatorname{Ext}^j_S(S/\operatorname{Pf}^t, S)$, from which we get the degrees of generators of these $\operatorname{Ext}$ modules. As a consequence, via graded local duality we answer a question of Wenliang Zhang on the socle degrees of local cohomology modules of the form $H^j_\mathfrak{m}(S/I^t)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源