论文标题
基于图形的Clifford异构体的合成框架
A graph-state based synthesis framework for Clifford isometries
论文作者
论文摘要
我们解决了Clifford等轴测汇编的问题,即如何将Clifford等轴测图合成为可执行的量子电路。我们提出了一个简单的合成框架,该框架仅利用Clifford组的基本特性和一个符号组的一个方程。我们通过表明文献的几种正常形式是天然的推论来强调框架的多功能性。我们恢复了在LNN体系结构上执行Clifford电路所需的两量Qubit Gate深度的状态,这与另一项工作同时。我们还提出了针对Clifford异构体的实用合成算法,重点是Clifford操作员,图形状态和Pauli旋转的Codiagonalization。基准表明,在所有三种情况下,我们都会改善与最新方法相比的2 Q量门计数和随机实例的深度。我们还改善了实用量子化学实验的执行。
We tackle the problem of Clifford isometry compilation, i.e, how to synthesize a Clifford isometry into an executable quantum circuit. We propose a simple framework for synthesis that only exploits the elementary properties of the Clifford group and one equation of the symplectic group. We highlight the versatility of our framework by showing that several normal forms of the literature are natural corollaries. We recover the state of the art two-qubit gate depth necessary for the execution of a Clifford circuit on an LNN architecture, concomitantly with another work. We also propose practical synthesis algorithms for Clifford isometries with a focus on Clifford operators, graph states and codiagonalization of Pauli rotations. Benchmarks show that in all three cases we improve the 2-qubit gate count and depth of random instances compared to the state-of-the-art methods. We also improve the execution of practical quantum chemistry experiments.