论文标题

类似爆米花的金字塔套件的尺寸

Dimensions of popcorn-like pyramid sets

论文作者

Banaji, Amlan, Chen, Haipeng

论文摘要

本文涉及一个函数家族的图表的维度理论,这些函数家族包括众所周知的“爆米花函数”及其金字塔样的高维类似物。我们计算这些图的盒子和附加尺寸,以及中间维度,这些尺寸是一个尺寸的家族,在Hausdorff和Box dimension之间插值。作为证据中的工具,我们使用概率理论的Chung $ \ unicode {x2013} $erdős不平等,高维的达芬$ \ unicode {x2013} $ schaeffer类型估计来自Diophantine近似值的估计,以及用于Euler Etient功能的界限。作为应用,我们在图形的分数布朗图像的框尺寸以及不同图之间的Hölder失真上获得边界。

This article concerns the dimension theory of the graphs of a family of functions which include the well-known 'popcorn function' and its pyramid-like higher-dimensional analogues. We calculate the box and Assouad dimensions of these graphs, as well as the intermediate dimensions, which are a family of dimensions interpolating between Hausdorff and box dimension. As tools in the proofs, we use the Chung$\unicode{x2013}$Erdős inequality from probability theory, higher-dimensional Duffin$\unicode{x2013}$Schaeffer type estimates from Diophantine approximation, and a bound for Euler's totient function. As applications we obtain bounds on the box dimension of fractional Brownian images of the graphs, and on the Hölder distortion between different graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源