论文标题

自动膝关节炎表型分类的无监督域适应

Unsupervised Domain Adaptation for Automated Knee Osteoarthritis Phenotype Classification

论文作者

Zhong, Junru, Yao, Yongcheng, Cahill, Donal G., Xiao, Fan, Li, Siyue, Lee, Jack, Ho, Kevin Ki-Wai, Ong, Michael Tim-Yun, Griffith, James F., Chen, Weitian

论文摘要

目的:这项研究的目的是证明使用小数据集(n = 50)使用自动膝关节骨关节炎(OA)表型分类中无监督的结构域适应性(UDA)的实用性。材料和方法:在这项回顾性研究中,我们从骨关节炎计划数据集中收集了3,166个三维(3D)双回波稳态磁共振(MR)图像,以及50 3D Turbo/Fast Spin-Echo MR来自我们研究所的源(2020年和2021年)。对于每个患者,最初根据MRI骨关节炎膝关节评分(MOAKS)对膝关节OA的程度进行分级,然后再转换为二进制OA表型标签。拟议的UDA管道包括(a)预处理,其中涉及自动分割和息裁剪; (b)源分类器培训,其中涉及源数据集上的训练前表型分类器; (c)目标编码器适应,涉及对目标编码器的源编码器和(d)目标分类器验证的无监督适应性,其中涉及对目标分类性能在接收器操作特征曲线(AUROC),敏感性,特异性和准确性和准确性和准确性下评估的目标分类性能的统计分析。此外,在没有UDA的情况下对分类器进行了比较。结果:与未经UDA训练的分类器相比,接受过UDA训练的目标分类器提高了AUROC,灵敏度,特异性和准确性。结论:拟议的UDA方法通过利用大型高质量的源数据集进行培训,改善了小型目标数据集的自动膝膝OA表型分类的性能。结果成功证明了UDA方法在小数据集上的分类中的优势。

Purpose: The aim of this study was to demonstrate the utility of unsupervised domain adaptation (UDA) in automated knee osteoarthritis (OA) phenotype classification using a small dataset (n=50). Materials and Methods: For this retrospective study, we collected 3,166 three-dimensional (3D) double-echo steady-state magnetic resonance (MR) images from the Osteoarthritis Initiative dataset and 50 3D turbo/fast spin-echo MR images from our institute (in 2020 and 2021) as the source and target datasets, respectively. For each patient, the degree of knee OA was initially graded according to the MRI Osteoarthritis Knee Score (MOAKS) before being converted to binary OA phenotype labels. The proposed UDA pipeline included (a) pre-processing, which involved automatic segmentation and region-of-interest cropping; (b) source classifier training, which involved pre-training phenotype classifiers on the source dataset; (c) target encoder adaptation, which involved unsupervised adaption of the source encoder to the target encoder and (d) target classifier validation, which involved statistical analysis of the target classification performance evaluated by the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Additionally, a classifier was trained without UDA for comparison. Results: The target classifier trained with UDA achieved improved AUROC, sensitivity, specificity and accuracy for both knee OA phenotypes compared with the classifier trained without UDA. Conclusion: The proposed UDA approach improves the performance of automated knee OA phenotype classification for small target datasets by utilising a large, high-quality source dataset for training. The results successfully demonstrated the advantages of the UDA approach in classification on small datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源