论文标题
一对旋转模型子因子之间的相对位置
Relative position between a pair of spin model subfactors
论文作者
论文摘要
琼斯提出了对$ II_1 $因子的两个子因子的研究,作为对希尔伯特空间中两个封闭子空间的量化。 Pimsner-Popa概率常数,Sano-Watatani角,内部和外部角度以及Connes-Størmer相对熵(以及它的略有变体)是分析其相对位置的一对子因子的一些关键不变性。但是,在实践中,这些不变式的明确计算通常很困难。在本文中,我们提供了对两个子因子的特殊类别的深入分析,即高铁型$ ii_1 $ raction $ r $的一对旋转模型子因子。我们首先表征当两个不同的$ n \ times n $复杂的hadamard矩阵产生独特的旋转模型子因子。然后,已经针对(Hadamard等价)复杂的Hadamard矩阵进行了详细的调查,订单$ 2 \ times 2 $以及Hadamard Intorgunder的订单订单订单$ 4 \ times 4 $。据我们所知,本文是文献中的第一个实例,其中PIMSNER-POPA概率常数的确切值和对(非平凡)亚比例的成对的非交通性相对熵。此外,我们证明了使用“通勤平方技术”的相应子因子对的相交的阶乘。在途中,我们构建了一个无限的$ r $的新型子因子家族。所有这些子因子都无法与琼斯指数$ 4N,n \ geq 2 $不可修复。结果,建立了自旋模型亚因子之间的内部角度的刚度。最后但并非最不重要的一点是,我们明确计算自旋模型子因子之间的Sano-Watatani角。
Jones proposed the study of two subfactors of a $II_1$ factor as a quantization of two closed subspaces in a Hilbert space. The Pimsner-Popa probabilistic constant, Sano-Watatani angle, interior and exterior angle, and Connes-Størmer relative entropy (along with a slight variant of it) are a few key invariants for pair of subfactors that analyze their relative position. In practice, however, the explicit computation of these invariants is often difficult. In this article, we provide an in-depth analysis of a special class of two subfactors, namely a pair of spin model subfactors of the hyperfinite type $II_1$ factor $R$. We first characterize when two distinct $n\times n$ complex Hadamard matrices give rise to distinct spin model subfactors. Then, a detailed investigation has been carried out for pairs of (Hadamard equivalent) complex Hadamard matrices of order $2\times 2$ as well as Hadamard inequivalent complex Hadamard matrices of order $4\times 4$. To the best of our knowledge, this article is the first instance in the literature where the exact value of the Pimsner-Popa probabilistic constant and the noncommutative relative entropy for pairs of (non-trivial) subfactors have been obtained. Furthermore, we prove the factoriality of the intersection of the corresponding pair of subfactors using the `commuting square technique'. En route, we construct an infinite family of potentially new subfactors of $R$. All these subfactors are irreducible with Jones index $4n,n\geq 2$. As a consequence, the rigidity of the interior angle between the spin model subfactors is established. Last but not least, we explicitly compute the Sano-Watatani angle between the spin model subfactors.