论文标题

物质重力的渐近安全性

Asymptotic safety of gravity with matter

论文作者

Eichhorn, Astrid, Schiffer, Marc

论文摘要

渐近安全范式认为,重力和物质的量子对称性在很高的能量下增强了量子比对称性,即在存在量子波动的情况下尺度对称性。为了实现这种对称性增强,必须平衡量子波动的效果。可以预期,只有在一组磁场内容和相互作用结构有限的理论中才能实现这种平衡。在本章中,我们回顾了有关这些限制的知识。从量子尺度不变的制度中,该理论转移到具有不同物理尺度的理论(最重要的是针对各种基本粒子的质量),在低能量下。在那里,量子标度不变性可以在理论的各种相互作用和质量尺度之间的关系中留下烙印。可以将这些关系与实验数据进行比较,实验数据具有两个可能的含义:首先,如果关系不匹配数据,则使用来自普朗克量表以下的能量的实验数据排除了在普朗克量表上和之外提出的基本的重力和物质量子理论。其次,如果关系与数据匹配,则渐近安全范式提供了标准模型的自由参数的第一原理推导。最重要的是,这可能包括Higgs质量与Electroweak量表的比率以及罚款常数的值。类似地,超出标准模型的理论可能具有比无重力的有效场理论化身相比,其自由参数少。这可能会导致对中微子质量的较小性以及对暗物质的性质和相互作用的预测的解释。

The asymptotic-safety paradigm posits that the symmetry of quantum theories of gravity and matter is enhanced to quantum scale symmetry, i.e., scale symmetry in the presence of quantum fluctuations, at very high energies. To achieve such a symmetry enhancement, the effect of quantum fluctuations must balance out. It is to be expected that such a balance can only be achieved within a set of theories with limited field content and interaction structure. In this chapter, we review how much is known about these limits. From the quantum scale invariant regime, the theory transits to a theory with distinct physical scales - most importantly masses for various elementary particles - at low energies. There, quantum scale invariance can leave its imprint in relations between various interactions and mass scales of the theory. These relations can be compared to experimental data, which has two possible implications: first, if the relations do not match the data, the underlying quantum theory of gravity and matter, formulated at and beyond the Planck scale, has been ruled out using experimental data from energies much below the Planck scale. Second, if the relations match the data, the asymptotic-safety paradigm provides a first-principles derivation of free parameters of the Standard Model. Most importantly, this may include the ratios of the Higgs mass to the electroweak scale as well as the value of the finestructure constant. Similarly, theories beyond the Standard Model may come with fewer free parameters than in their effective-field-theory incarnation without gravity. This may lead to an explanation of the smallness of neutrinos masses and predictions for the nature and interactions of dark matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源