论文标题

实现耦合矢量场的可允许图

The realization of admissible graphs for coupled vector fields

论文作者

Amorim, Tiago, Manoel, Miriam

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In a coupled network cells can interact in several ways. There is a vast literature from the last twenty years that investigates this interacting dynamics under a graph theory formalism, namely as a graph endowed with an input-equivalence relation on the set of vertices that enables a characterization of the admissible vector fields that rules the network dynamics. The present work goes in the direction of answering an inverse problem: for $n \geq 2$, any mapping on $\mathbb{R}^n$ can be realized as an admissible vector field for some graph with the number of vertices depending on (but not necessarily equal to) $n$. Given a mapping, we present a procedure to construct all non-equivalent admissible graphs, up to the appropriate equivalence relation. We also give an upper bound for the number of such graphs. As a consequence, invariant subspaces under the vector field can be investigated as the locus of synchrony states supported by an admissible graph, in the sense that a suitable graph can be chosen to realize couplings with more (or less) synchrony than another graph admissible to the same vector field. The approach provides in particular a systematic investigation of occurrence of chimera states in a network of van der Pol identical oscillators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源