论文标题

部分可观测时空混沌系统的无模型预测

Leveraging Natural Language Processing to Augment Structured Social Determinants of Health Data in the Electronic Health Record

论文作者

Lybarger, Kevin, Dobbins, Nicholas J, Long, Ritche, Singh, Angad, Wedgeworth, Patrick, Ozuner, Ozlem, Yetisgen, Meliha

论文摘要

目的:卫生(SDOH)的社会决定因素影响健康结果,并通过结构化数据和非结构化的临床注释在电子健康记录(EHR)中进行了记录。但是,临床笔记通常包含更全面的SDOH信息,详细介绍了状态,严重性和时间性等方面。这项工作有两个主要目标:i)开发自然语言处理(NLP)信息提取模型,以捕获详细的SDOH信息,ii)通过将SDOH提取器应用于临床叙述并将提取的表示形式与现有结构化数据相结合,从而评估获得的信息增益。 材料和方法:我们使用深度学习实体和关系提取体系结构开发了一种新型的SDOH提取器,以在各个维度上表征SDOH。在EHR案例研究中,我们将SDOH提取器应用于具有225,089例患者和430,406个注释的大型临床数据集,并将其与现有的结构化数据进行了比较。 结果:SDOH提取器在固定测试集​​上达到0.86 F1。在EHR案例研究中,我们发现提取的SDOH信息与32%的无家可归患者,现任烟草使用者的19%和10%的吸毒者仅在临床叙述中记录了这些健康风险因素。 结论:利用EHR数据来识别SDOH健康风险因素和社会需求可以改善患者的护理和结果。文本编码的SDOH信息的语义表示可以增加现有的结构化数据,而这种更全面的SDOH表示可以帮助卫生系统识别和满足这些社会需求。

Objective: Social determinants of health (SDOH) impact health outcomes and are documented in the electronic health record (EHR) through structured data and unstructured clinical notes. However, clinical notes often contain more comprehensive SDOH information, detailing aspects such as status, severity, and temporality. This work has two primary objectives: i) develop a natural language processing (NLP) information extraction model to capture detailed SDOH information and ii) evaluate the information gain achieved by applying the SDOH extractor to clinical narratives and combining the extracted representations with existing structured data. Materials and Methods: We developed a novel SDOH extractor using a deep learning entity and relation extraction architecture to characterize SDOH across various dimensions. In an EHR case study, we applied the SDOH extractor to a large clinical data set with 225,089 patients and 430,406 notes with social history sections and compared the extracted SDOH information with existing structured data. Results: The SDOH extractor achieved 0.86 F1 on a withheld test set. In the EHR case study, we found extracted SDOH information complements existing structured data with 32% of homeless patients, 19% of current tobacco users, and 10% of drug users only having these health risk factors documented in the clinical narrative. Conclusions: Utilizing EHR data to identify SDOH health risk factors and social needs may improve patient care and outcomes. Semantic representations of text-encoded SDOH information can augment existing structured data, and this more comprehensive SDOH representation can assist health systems in identifying and addressing these social needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源