论文标题
可解释碳氢化合物前景风险的机器学习
Explainable Machine Learning for Hydrocarbon Prospect Risking
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Hydrocarbon prospect risking is a critical application in geophysics predicting well outcomes from a variety of data including geological, geophysical, and other information modalities. Traditional routines require interpreters to go through a long process to arrive at the probability of success of specific outcomes. AI has the capability to automate the process but its adoption has been limited thus far owing to a lack of transparency in the way complicated, black box models generate decisions. We demonstrate how LIME -- a model-agnostic explanation technique -- can be used to inject trust in model decisions by uncovering the model's reasoning process for individual predictions. It generates these explanations by fitting interpretable models in the local neighborhood of specific datapoints being queried. On a dataset of well outcomes and corresponding geophysical attribute data, we show how LIME can induce trust in model's decisions by revealing the decision-making process to be aligned to domain knowledge. Further, it has the potential to debug mispredictions made due to anomalous patterns in the data or faulty training datasets.