论文标题

与Hölder连续Jacobians单调变化不平等的正规化牛顿方法

Regularized Newton Methods for Monotone Variational Inequalities with Hölder Continuous Jacobians

论文作者

Liu, Chengchang, Luo, Luo

论文摘要

本文考虑了解决霍尔德连续雅各布人解决单调变化不平等的问题。通过采用Hölder参数$ν$的知识,我们最多只能在$ \ Mathcal O(ε^{ - 2/(2+ν)})$迭代中提出$ν$ regularized Newton方法,以获得$ε$ -ACCCRATE解决方案。在$ν$的情况下是未知的,我们建议在$ \ Mathcal O(ε^{ - 4/(3(1+ν))})中的通用正规化牛顿法。

This paper considers the problems of solving monotone variational inequalities with Hölder continuous Jacobians. By employing the knowledge of Hölder parameter $ν$, we propose the $ν$-regularized extra-Newton method within at most $\mathcal O(ε^{-2/(2+ν)})$ iterations to obtain an $ε$-accurate solution. In the case of $ν$ is unknown, we propose the universal regularized extra-Newton method within $\mathcal O(ε^{-4/(3(1+ν))})$ iteration complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源