论文标题
联合意图和插槽标签的零拍学习
Zero-Shot Learning for Joint Intent and Slot Labeling
论文作者
论文摘要
获得大量句子级别的意图和token级别的插槽标签注释是昂贵且难以训练基于任务的对话框的基于神经网络(NN)的自然语言理解(NLU)组件,尤其是对于许多现实世界中的许多现实世界任务,这些任务具有大量和增长的意图和插槽类型。尽管仅针对插槽标签提出了不需要标记的示例(仅功能和辅助信息)的零射击学习方法,但我们表明,一个人可以盈利地执行联合零射击意图分类和插槽标签。我们演示了捕获意图和插槽之间的依赖关系的价值,以及在零镜头设置中的话语中的不同插槽之间。我们描述了在单词和句子嵌入空间之间转化的NN体系结构,并证明需要这些修改以使该任务为零射击学习。我们显示了对强基础的实质性改进,并通过可视化和消融研究来解释每种体系结构修饰背后的直觉。
It is expensive and difficult to obtain the large number of sentence-level intent and token-level slot label annotations required to train neural network (NN)-based Natural Language Understanding (NLU) components of task-oriented dialog systems, especially for the many real world tasks that have a large and growing number of intents and slot types. While zero shot learning approaches that require no labeled examples -- only features and auxiliary information -- have been proposed only for slot labeling, we show that one can profitably perform joint zero-shot intent classification and slot labeling. We demonstrate the value of capturing dependencies between intents and slots, and between different slots in an utterance in the zero shot setting. We describe NN architectures that translate between word and sentence embedding spaces, and demonstrate that these modifications are required to enable zero shot learning for this task. We show a substantial improvement over strong baselines and explain the intuition behind each architectural modification through visualizations and ablation studies.