论文标题

自下而上全息图中的相变和轻标量

Phase transitions and light scalars in bottom-up holography

论文作者

Elander, Daniel, Fatemiabhari, Ali, Piai, Maurizio

论文摘要

在自下而上的全息方法中,我们构建了一类六维重力模型,并讨论了可以在远紫外线中以双重五维形式的形式理论的形式来解释的解决方案。我们将与重力理论中一个标量场质量有关的尺度视为自由参数。常规几何形状中的一个维度在缩小的圆圈上被压缩,因此模仿了所得的双重四维理论中的限制。 我们研究了骨态的质谱。该频谱中最轻的状态是标量粒子。沿解决方案的常规(限制)分支,我们发现参数空间中的一部分速度不稳定性的存在,并通过质谱的平滑变形来达到,这是重力理论中背景标量场的边界值的函数。在速旋附近的参数空间区域中,最轻的标量粒子可以解释为近似dilaton,由应力 - 能量张量的痕迹产生,其质量被参数抑制。 我们还沿着重力溶液的几个分支计算自由能。我们发现,沿封闭溶液的分支鉴定出的参数空间的膨胀和速度区域都隐藏在一阶相变的后面,因此,无论是稳定的解决方案,它们都无法实现为稳定的溶液,而不论变形现场理论的缩放维度如何。尤其是(近似)dilaton出现在亚稳态溶液中。然而,(轻度)抑制了接近相变的最轻状态的质量。当控制变形的缩放维度的(自由)参数为5/2时,该功能会放大,这是场理论中时空维度的一半。

Within the bottom-up approach to holography, we construct a class of six-dimensional gravity models, and discuss solutions that can be interpreted, asymptotically in the far UV, in terms of dual five-dimensional conformal field theories deformed by a single scalar operator. We treat the scaling dimension of such operator, related to the mass of the one scalar field in the gravity theory, as a free parameter. One dimension in the regular geometry is compactified on a shrinking circle, hence mimicking confinement in the resulting dual four-dimensional theories. We study the mass spectrum of bosonic states. The lightest state in this spectrum is a scalar particle. Along the regular (confining) branch of solutions, we find the presence of a tachyonic instability in part of the parameter space, reached by a smooth deformation of the mass spectrum, as a function of the boundary value of the background scalar field in the gravity theory. In a region of parameter space nearby the tachyonic one, the lightest scalar particle can be interpreted as an approximate dilaton, sourced by the trace of the stress-energy tensor, and its mass is parametrically suppressed. We also compute the free energy, along several branches of gravity solutions. We find that both the dilatonic and tachyonic regions of parameter space, identified along the branch of confining solutions, are hidden behind a first-order phase transition, so that they are not realised as stable solutions, irrespectively of the scaling dimension of the deforming field-theory operator. The (approximate) dilaton, in particular, appears in metastable solutions. Yet, the mass of the lightest state, computed close to the phase transition, is (mildly) suppressed. This feature is amplified when the (free) parameter controlling the scaling dimension of the deformation is 5/2, half the dimension of space-time in the field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源