论文标题

NERF-ART:文本驱动的神经辐射场风格

NeRF-Art: Text-Driven Neural Radiance Fields Stylization

论文作者

Wang, Can, Jiang, Ruixiang, Chai, Menglei, He, Mingming, Chen, Dongdong, Liao, Jing

论文摘要

作为3D场景的强大表示,神经辐射场(NERF)可以从多视图图像中构成高质量的新型视图综合。然而,对nerf进行样式化仍然具有挑战性,尤其是在模拟文本引导样式的外观和几何形状同时改变的情况下。在本文中,我们介绍了Nerf-Art,这是一种文本引导的NERF风格化方法,该方法用简单的文本提示来操纵预训练的NERF模型的样式。与以前缺乏足够的几何变形和纹理细节的方法不同,或者需要网格来指导风格化,我们的方法可以将3D场景转移到目标样式的目标样式,其特征是所需的几何形状和外观变化,而无需任何网格指导。这是通过引入一种新型的全球局部对比学习策略来实现的,并结合了同时控制目标样式的轨迹和强度的方向约束。此外,我们采用了一种重量正则化方法来有效抑制当密度场在几何形式样式过程中转换时很容易出现的多云伪像和几何噪声。通过对各种样式的广泛实验,我们证明了我们的方法在单视风格质量和跨视图一致性方面具有有效且健壮。代码和更多结果可以在我们的项目页面中找到:https://cassiepypython.github.io/nerfart/。

As a powerful representation of 3D scenes, the neural radiance field (NeRF) enables high-quality novel view synthesis from multi-view images. Stylizing NeRF, however, remains challenging, especially on simulating a text-guided style with both the appearance and the geometry altered simultaneously. In this paper, we present NeRF-Art, a text-guided NeRF stylization approach that manipulates the style of a pre-trained NeRF model with a simple text prompt. Unlike previous approaches that either lack sufficient geometry deformations and texture details or require meshes to guide the stylization, our method can shift a 3D scene to the target style characterized by desired geometry and appearance variations without any mesh guidance. This is achieved by introducing a novel global-local contrastive learning strategy, combined with the directional constraint to simultaneously control both the trajectory and the strength of the target style. Moreover, we adopt a weight regularization method to effectively suppress cloudy artifacts and geometry noises which arise easily when the density field is transformed during geometry stylization. Through extensive experiments on various styles, we demonstrate that our method is effective and robust regarding both single-view stylization quality and cross-view consistency. The code and more results can be found in our project page: https://cassiepython.github.io/nerfart/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源