论文标题

介入(运输)直接和间接效应的非参数估计量,可容纳多个调解人和多个中间混杂因子

Nonparametric estimators of interventional (transported) direct and indirect effects that accommodate multiple mediators and multiple intermediate confounders

论文作者

Rudolph, Kara E, Williams, Nicholas, Diaz, Ivan

论文摘要

调解分析具有提高因果影响机械驱动因素的理解的能力,但现实世界数据的复杂性挑战了其成功实施,包括:1)存在暴露后变量的存在,这些变量也影响了中介者和结果(因此,也可能混淆了中介效果关系),这些变量也可能是2)多个派系,以及3)多个派象体的生成。介入的直接和间接效应(IDE/IIE)适应混淆中介结果关系的暴露后变量,但目前,尚无对IDE/IIE的估计量,允许允许多元介体和多元曝光后跨性别混淆者。再次,这代表了实际分析的重要限制。我们通过扩大两个最近开发的非参数估计器(一个估计IDE/IIE,另一个估计将IDE/IIE运送到新的目标人群)来解决这一差距,以同时允许多元介体和多元中间混杂因素。我们使用仿真来检查有限的样本性能,并将这些估计器应用于移动到机会试验的纵向数据。在应用程序中,我们介绍了将间接效应分离为中介或中介人特异性间接效应的策略,同时适当地考虑了其他可能同时发生的中间变量。

Mediation analysis is appealing for its ability to improve understanding of the mechanistic drivers of causal effects, but real-world data complexities challenge its successful implementation, including: 1) the existence of post-exposure variables that also affect mediators and outcomes (thus, confounding the mediator-outcome relationship), that may also be 2) multivariate, and 3) the existence of multivariate mediators. Interventional direct and indirect effects (IDE/IIE) accommodate post-exposure variables that confound the mediator-outcome relationship, but currently, no estimator for IDE/IIE exists that allows for both multivariate mediators and multivariate post-exposure intermediate confounders. This, again, represents a significant limitation for real-world analyses. We address this gap by extending two recently developed nonparametric estimators -- one that estimates the IDE/IIE and another that estimates the IDE/IIE transported to a new, target population -- to allow for multivariate mediators and multivariate intermediate confounders simultaneously. We use simulation to examine finite sample performance, and apply these estimators to longitudinal data from the Moving to Opportunity trial. In the application, we walk through a strategy for separating indirect effects into mediator- or mediator-group-specific indirect effects, while appropriately accounting for other, possibly co-occurring intermediate variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源