论文标题
统一序列更好:时间间隔意识数据增加用于顺序建议
Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation
论文作者
论文摘要
顺序建议是预测基于一系列相互作用项目的访问的下一个项目的重要任务。大多数现有作品都将用户偏好作为从上一个项目到下一个项目的过渡模式学习,而忽略了这两个项目之间的时间间隔。但是,我们观察到,序列中的时间间隔可能有很大差异,因此由于\ emph {preferperion draft}的问题而导致用户建模无效。实际上,我们进行了一项实证研究来验证这一观察结果,并发现具有均匀分布的时间间隔(表示为统一序列)的序列比在时间间隔变化的序列更有益于性能。因此,我们建议从时间间隔的角度增强序列数据,而文献中没有研究。具体而言,我们设计了五个操作员(Ti-Crop,Ti-Reorder,Ti-Mask,Ti-Substitute,Ti-Insert),以考虑到时间间隔的方差,将原始的非均匀序列转换为均匀序列。然后,我们设计了一种控制策略,以执行不同长度的项目序列的数据增强。最后,我们在最先进的模型CosEREC上实施了这些改进,并在四个真实数据集上验证了我们的方法。实验结果表明,我们的方法比其他11种竞争方法的性能要好得多。我们的实施可用:https://github.com/kinggugu/ticoserec。
Sequential recommendation is an important task to predict the next-item to access based on a sequence of interacted items. Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items. However, we observe that the time interval in a sequence may vary significantly different, and thus result in the ineffectiveness of user modeling due to the issue of \emph{preference drift}. In fact, we conducted an empirical study to validate this observation, and found that a sequence with uniformly distributed time interval (denoted as uniform sequence) is more beneficial for performance improvement than that with greatly varying time interval. Therefore, we propose to augment sequence data from the perspective of time interval, which is not studied in the literature. Specifically, we design five operators (Ti-Crop, Ti-Reorder, Ti-Mask, Ti-Substitute, Ti-Insert) to transform the original non-uniform sequence to uniform sequence with the consideration of variance of time intervals. Then, we devise a control strategy to execute data augmentation on item sequences in different lengths. Finally, we implement these improvements on a state-of-the-art model CoSeRec and validate our approach on four real datasets. The experimental results show that our approach reaches significantly better performance than the other 11 competing methods. Our implementation is available: https://github.com/KingGugu/TiCoSeRec.