论文标题

千古的辫子,奇异的链接和漫画类型的亚组

Singular braids, singular links and subgroups of camomile type

论文作者

Bardakov, Valeriy G., Kozlovskaya, Tatyana A.

论文摘要

在本文中,我们找到了一组有限的发电机和奇异纯编织组$ sp_n $,$ n \ geq 3 $的定义关系,这是单数编织组$ sg_n $的子组。使用此演示文稿,我们证明了$ sg_n $的中心(等于$ n \ geq 3 $的$ sp_n $中心)是$ sp_n $的直接因素,但它不是$ sp_n $的直接因素。我们介绍了Commile类型的子组,并证明了单数纯编织组$ sp_n $,$ n \ geq 5 $,是$ sg_n $中的commile类型的子组。另外,我们还使用自由古德尔(Guandle)的内态构造单数单型单体的代表来构建基本的单Quandle。对于任何单数链接,我们定义了一些群体家庭,这些群体是此链接的不变。

In this paper we find a finite set of generators and defining relations for the singular pure braid group $SP_n$, $n \geq 3$, that is a subgroup of the singular braid group $SG_n$. Using this presentation, we prove that the center of $SG_n$ (which is equal to the center of $SP_n$ for $n \geq 3$) is a direct factor in $SP_n$ but it is not a direct factor in $SP_n$. We introduce subgroups of camomile type and prove that the singular pure braid group $SP_n$, $n \geq 5$, is a subgroup of camomile type in $SG_n$. Also we construct the fundamental singquandle using a representation of the singular braid monoid by endomorphisms of free guandle. For any singular link we define some family of groups which are invariants of this link.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源