论文标题
用标签噪声的实例依赖性标签分布估计
Instance-dependent Label Distribution Estimation for Learning with Label Noise
论文作者
论文摘要
噪声过渡矩阵(NTM)估计是使用标签噪声学习的有前途的学习方法。它可以根据嘈杂的后概率(称为标签分布(LD))来推断清洁的后验概率,并减少嘈杂标签的影响。但是,由于地面真相标签并不总是可用,因此这一估计是具有挑战性的。大多数现有方法使用正确标记的样品(锚点)或检测到的可靠样品(伪锚点)估算全局NTM。这些方法在很大程度上依赖于锚点的存在或伪质量的质量,并且全局NTM几乎无法为每个样品提供准确的标签过渡信息,因为实际应用中的标签噪声主要取决于实例。为了应对这些挑战,我们提出了一种依赖实例的标签分布估计(ILDE)方法,以从嘈杂的标签中学习以进行图像分类。该方法的工作流程有三个主要步骤。首先,我们估计每个样本的嘈杂后概率,由嘈杂的标签监督。其次,由于错误标签的概率与类间相关密切相关,因此我们计算了类间相关矩阵以估计NTM,绕过了对(伪)锚点的需求。此外,为了准确地近似实例依赖性NTM,我们仅使用微型批次样本而不是整个培训数据集来计算类间相关矩阵。第三,我们将噪声后验概率转化为实例依赖性LD,通过将其乘以估计的NTM乘,使用结果LD进行增强的监督,以防止DCNNS记住嘈杂的标签。已针对两个合成和三个现实世界嘈杂数据集的几种最新方法评估了所提出的ILDE方法。我们的结果表明,无论噪声是合成还是真实的噪声,所提出的ILDE方法都优于所有竞争方法。
Noise transition matrix (NTM) estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global NTM using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global NTM can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method's workflow has three major steps. First, we estimate each sample's noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the NTM, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent NTM, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated NTM, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.