论文标题

抗小节代码

Antichain Codes

论文作者

Gunby, Benjamin, He, Xiaoyu, Narayanan, Bhargav, Spiro, Sam

论文摘要

如果$ x \ not \ subset y $的所有不同$ x,y \ in a $ in A $中的$ x \ subset y $,则据说是一个抗小节,据说如果$ a $ a $ a $ a $ a $ hamming距离至少至少$ r $,则据说是距离$ r $ $ $。在这里,我们证明,如果$ a \ subset 2^{[n]} $既是抗小节,又是距离 - $(2r+1)$代码,则是$ | a | = o_r(2^n n^{ - r-1/2})$。该结果最能够达到隐含常数,是纯粹的组合加强,对利特伍德理论中的许多结果进行了加强。例如,我们的结果给出了Hálasz定理的简短组合证明,而以前所有已知结果的证明都是傅立叶分析。

A family of sets $A$ is said to be an antichain if $x\not\subset y$ for all distinct $x,y\in A$, and it is said to be a distance-$r$ code if every pair of distinct elements of $A$ has Hamming distance at least $r$. Here, we prove that if $A\subset 2^{[n]}$ is both an antichain and a distance-$(2r+1)$ code, then $|A| = O_r(2^n n^{-r-1/2})$. This result, which is best-possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood--Offord theory; for example, our result gives a short combinatorial proof of Hálasz's theorem, while all previously known proofs of this result are Fourier-analytic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源