论文标题

关于减少数字和Castelnuovo-Mumford的爆炸环和模块的规律性

On reduction numbers and Castelnuovo-Mumford regularity of blowup rings and modules

论文作者

Miranda-Neto, Cleto B., Queiroz, Douglas S.

论文摘要

我们证明了有关降低数量与爆炸代数和爆炸模块的Castelnuovo-Mumford规律性之间的连接的新结果,关键的基本工具是Ratliff-Rush关闭的操作。首先,我们在两种特殊情况下回答了M. E. Rossi,D。T. Trung和N. V. Trung关于二维Buchsbaum本地环中理想的Rees代数的问题,甚至我们甚至询问其中一种情况之一。在另一种定理中,我们通过将其扩展到任意维度(并允许相对于Cohen-Macaulay模块)将其扩展到二维Cohen-Macaulay局部环中的理想结果。我们得出许多应用,包括线性类型的(多项式)理想的表征,广义乌尔里希理想理论的进步以及其他作者的结果改进。

We prove new results on the connections between reduction numbers and the Castelnuovo-Mumford regularity of blowup algebras and blowup modules, the key basic tool being the operation of Ratliff-Rush closure. First, we answer in two particular cases a question of M. E. Rossi, D. T. Trung, and N. V. Trung about Rees algebras of ideals in two-dimensional Buchsbaum local rings, and we even ask whether one of such situations always holds. In another theorem we generalize a result of A. Mafi on ideals in two-dimensional Cohen-Macaulay local rings, by extending it to arbitrary dimension (and allowing for the setting relative to a Cohen-Macaulay module). We derive a number of applications, including a characterization of (polynomial) ideals of linear type, progress on the theory of generalized Ulrich ideals, and improvements of results by other authors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源