论文标题

用于红外小目标检测的一阶段级联改进网络

One-Stage Cascade Refinement Networks for Infrared Small Target Detection

论文作者

Dai, Yimian, Li, Xiang, Zhou, Fei, Qian, Yulei, Chen, Yaohong, Yang, Jian

论文摘要

由于缺乏固有的特征,不精确的边界回归,现实世界数据集的稀缺和敏感的本地化评估,因此单帧红外小目标(SIRST)检测一直是一项具有挑战性的任务。在本文中,我们提出了针对这些挑战的全面解决方案。首先,我们发现现有的无锚标签分配方法容易误标记小目标作为背景,从而导致检测器的遗漏。为了克服这个问题,我们提出了一个基于伪箱的标签分配方案,该方案放宽了规模的约束,并将空间分配与地面真相目标的大小相脱离。其次,是由特征金字塔的结构化事先提出的​​,我们引入了单阶段的级联改进网络(Oscar),该网络将高级头部用作低级改进头的软提案。这允许奥斯卡以级联的粗到精细方式处理相同的目标。最后,我们提出了一个新的研究基准,用于红外小目标检测,由现实世界中的SIRST-V2数据集,高分辨率的单帧目标,归一化对比度评估度量和用于检测的DeepinFrared Toolkit组成。我们进行了广泛的消融研究,以评估奥斯卡的组成部分,并将其性能与SIRST-V2基准的最先进的模型驱动和数据驱动的方法进行比较。我们的结果表明,自上而下的级联改进框架可以提高红外小目标检测的准确性,而无需牺牲效率。 DeepinFrared工具包,数据集和训练有素的模型可在https://github.com/yimiandai/open-deepinfrared上获得,以推进该领域的进一步研究。

Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源