论文标题
Steernerf:通过平滑的视点轨迹加速NERF渲染
SteerNeRF: Accelerating NeRF Rendering via Smooth Viewpoint Trajectory
论文作者
论文摘要
神经辐射场(NERF)表现出了出色的新型综合性能,但在渲染方面却很慢。为了加快量渲染过程,已经提出了许多加速方法,以大量的记忆消耗为代价。为了推动效率内存权衡的边界,我们探索了一种新的观点,以加速NERF渲染,并利用一个关键事实,即在交互式观点控制中,观点变化通常是平稳且连续的。这使我们能够利用前面观点的信息减少渲染像素的数量以及沿其余像素射线的采样点的数量。在我们的管道中,首先通过音量渲染渲染低分辨率的特征图,然后应用轻量级2D神经渲染器,以在目标分辨率下生成输出图像,以利用前面和电流框架的特征。我们表明,所提出的方法可以实现竞争性的渲染质量,同时以很少的内存开销减少渲染时间,从而以1080p的图像分辨率使30fps具有低内存足迹。
Neural Radiance Fields (NeRF) have demonstrated superior novel view synthesis performance but are slow at rendering. To speed up the volume rendering process, many acceleration methods have been proposed at the cost of large memory consumption. To push the frontier of the efficiency-memory trade-off, we explore a new perspective to accelerate NeRF rendering, leveraging a key fact that the viewpoint change is usually smooth and continuous in interactive viewpoint control. This allows us to leverage the information of preceding viewpoints to reduce the number of rendered pixels as well as the number of sampled points along the ray of the remaining pixels. In our pipeline, a low-resolution feature map is rendered first by volume rendering, then a lightweight 2D neural renderer is applied to generate the output image at target resolution leveraging the features of preceding and current frames. We show that the proposed method can achieve competitive rendering quality while reducing the rendering time with little memory overhead, enabling 30FPS at 1080P image resolution with a low memory footprint.