论文标题
杂音:半结构化数据之间的模块化多步推理
MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text Generation
论文作者
论文摘要
提示大型语言模型已使多步推理的最新进展超出文本推理。但是,当从半结构数据(例如图形或表格)中应用于文本生成时,这些方法通常会遭受低语义覆盖率,幻觉和逻辑上的不一致的困扰。我们提出了Murmur,这是一种神经符号模块化的方法,可以从具有多步推理的半结构数据中生成文本生成。 Murmur是一种最佳第一搜索方法,使用以下方式生成推理路径:(1)具有特定语言和逻辑技能的神经和符号模块,(2)一种语法,其生产规则定义了模块的有效组成,以及(3)评估每个推理步骤质量的价值功能。我们对WebNLG和LogicNLG的两个不同数据之间的生成任务进行实验。这些任务在其数据表示(图和表格)上有所不同,并涵盖了多种语言和逻辑技能。 Murmur比最近几次射击基线(如直接提示和经过经过思考的提示)获得了重大改进,同时还可以在外域数据上实现与良好的GPT-2相当的性能。此外,人类评估表明,与直接提示相比,杂音产生了高度忠实且正确的推理路径,在逻辑上导致逻辑上的摘要更高26%。
Prompting large language models has enabled significant recent progress in multi-step reasoning over text. However, when applied to text generation from semi-structured data (e.g., graphs or tables), these methods typically suffer from low semantic coverage, hallucination, and logical inconsistency. We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning. MURMUR is a best-first search method that generates reasoning paths using: (1) neural and symbolic modules with specific linguistic and logical skills, (2) a grammar whose production rules define valid compositions of modules, and (3) value functions that assess the quality of each reasoning step. We conduct experiments on two diverse data-to-text generation tasks like WebNLG and LogicNLG. These tasks differ in their data representations (graphs and tables) and span multiple linguistic and logical skills. MURMUR obtains significant improvements over recent few-shot baselines like direct prompting and chain-of-thought prompting, while also achieving comparable performance to fine-tuned GPT-2 on out-of-domain data. Moreover, human evaluation shows that MURMUR generates highly faithful and correct reasoning paths that lead to 26% more logically consistent summaries on LogicNLG, compared to direct prompting.