论文标题

部分可观测时空混沌系统的无模型预测

Lipschitz Functions on Unions and Quotients of Metric Spaces

论文作者

Freeman, David M., Gartland, Chris

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Given a finite collection $\{X_i\}_{i\in I}$ of metric spaces, each of which has finite Nagata dimension and Lipschitz free space isomorphic to $L^1$, we prove that their union has Lipschitz free space isomorphic to $L^1$. The short proof we provide is based on the Pelczyński decomposition method. A corollary is a solution to a question of Kaufmann about the union of two planar curves with tangential intersection. A second focus of the paper is on a special case of this result that can be studied using geometric methods. That is, we prove that the Lipschitz free space of a union of finitely many quasiconformal trees is isomorphic to $L^1$. These geometric methods also reveal that any metric quotient of a quasiconformal tree has Lipschitz free space isomorphic to $L^1$. Finally, we analyze Lipschitz light maps on unions and metric quotients of quasiconformal trees in order to prove that the Lipschitz dimension of any such union or quotient is equal to 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源