论文标题

使用机器学习分析和应用多光谱数据进行水分割

Analysis and application of multispectral data for water segmentation using machine learning

论文作者

Gupta, Shubham, D., Uma, Hebbar, Ramachandra

论文摘要

监测水是一项复杂的任务,因为它的动态性质,增加了污染物和土地堆积。 Sentinel-2多光谱产品通过高分辨率数据的可用性使实施遥感应用程序可行。但是,产品过度利用或不足的产品的多光谱带可能会导致劣等性能。在这项工作中,我们比较了使用八种机器学习算法在Sentinel-2产品中可用的13个频段中的十个频段中的十个表演。我们发现,短波红外带(B11和B12)是分割水体最优秀的。 B11的总体准确度为$ 71 \%$ $,而B12在测试网站上所有算法中都达到了$ 69 \%$。我们还发现,支持向量机(SVM)算法最有利于单波段水分割。在给定的测试网站上,SVM在经过测试的频段中实现了$ 69 \%$的总体准确性。最后,为了证明选择适量数据的有效性,我们仅使用B11反射数据来训练人工神经网络BandNet。即使有了基本的体系结构,带网与用于语义和水分的已知架构成正比,在测试网站上达到了92.47美元的$ 92.47 $。带网只需要一小部分时间和资源即可训练和运行推理,因此可以在Web应用程序上部署和监视本地化区域的水体。我们的代码库可在https://github.com/iamshubhamgupto/bandnet上找到。

Monitoring water is a complex task due to its dynamic nature, added pollutants, and land build-up. The availability of high-resolu-tion data by Sentinel-2 multispectral products makes implementing remote sensing applications feasible. However, overutilizing or underutilizing multispectral bands of the product can lead to inferior performance. In this work, we compare the performances of ten out of the thirteen bands available in a Sentinel-2 product for water segmentation using eight machine learning algorithms. We find that the shortwave infrared bands (B11 and B12) are the most superior for segmenting water bodies. B11 achieves an overall accuracy of $71\%$ while B12 achieves $69\%$ across all algorithms on the test site. We also find that the Support Vector Machine (SVM) algorithm is the most favourable for single-band water segmentation. The SVM achieves an overall accuracy of $69\%$ across the tested bands over the given test site. Finally, to demonstrate the effectiveness of choosing the right amount of data, we use only B11 reflectance data to train an artificial neural network, BandNet. Even with a basic architecture, BandNet is proportionate to known architectures for semantic and water segmentation, achieving a $92.47$ mIOU on the test site. BandNet requires only a fraction of the time and resources to train and run inference, making it suitable to be deployed on web applications to run and monitor water bodies in localized regions. Our codebase is available at https://github.com/IamShubhamGupto/BandNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源