论文标题

在线受控实验中分配实验变体

Assign Experiment Variants at Scale in Online Controlled Experiments

论文作者

Li, Qike, Jamkhande, Samir, Kochetkov, Pavel, Liu, Pai

论文摘要

在线受控实验(A/B测试)已成为学习新产品功能在技术公司中的影响的黄金标准。随机化可以从A/B检验中推断因果关系。随机分配地图最终用户以实验存储桶和平衡组之间的用户特征。因此,实验可以将实验组之间的任何结果差异归因于实验中的产品特征。技术公司按大规模运行A/B测试 - 数百个即使不是成千上万的A/B测试同时进行,每个测试都有数百万用户。大规模对随机构成了独特的挑战。首先,由于实验服务每秒收到数十万个查询,因此随机分配必须很快。其次,变体分配必须在实验之间是独立的。第三,当用户重新访问或实验招募更多用户时,任务必须保持一致。我们提出了一种新颖的分配算法和统计测试,以验证随机分配。我们的结果表明,这种算法在计算上不仅很快,而且还满足了统计要求 - 公正和独立。

Online controlled experiments (A/B tests) have become the gold standard for learning the impact of new product features in technology companies. Randomization enables the inference of causality from an A/B test. The randomized assignment maps end users to experiment buckets and balances user characteristics between the groups. Therefore, experiments can attribute any outcome differences between the experiment groups to the product feature under experiment. Technology companies run A/B tests at scale -- hundreds if not thousands of A/B tests concurrently, each with millions of users. The large scale poses unique challenges to randomization. First, the randomized assignment must be fast since the experiment service receives hundreds of thousands of queries per second. Second, the variant assignments must be independent between experiments. Third, the assignment must be consistent when users revisit or an experiment enrolls more users. We present a novel assignment algorithm and statistical tests to validate the randomized assignments. Our results demonstrate that not only is this algorithm computationally fast but also satisfies the statistical requirements -- unbiased and independent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源