论文标题

多尺度关系图卷积网络,用于在组织病理学图像中多个实例学习

Multi-Scale Relational Graph Convolutional Network for Multiple Instance Learning in Histopathology Images

论文作者

Bazargani, Roozbeh, Fazli, Ladan, Goldenberg, Larry, Gleave, Martin, Bashashati, Ali, Salcudean, Septimiu

论文摘要

图卷积神经网络在自然和组织病理学图像中显示出显着的潜力。但是,它们的使用仅在单个放大倍率或多次融合中进行了研究。为了通过将多尺度的关系图卷积网络(MS-RGCN)作为多个实例学习方法引入多尺度的关系图卷积网络(MS-RGCN)来利用多磁化信息和与图形卷积网络的早期融合在一起。我们将组织病理学图像贴片建模及其与其他尺度(即放大尺度)的相邻斑块和斑块的关系作为图。为了传递不同放大倍率嵌入空间之间的信息,我们根据节点和边缘类型定义了单独的消息通讯神经网络。我们对前列腺癌组织病理学图像进行实验,以根据斑块提取的特征来预测年级组。我们还将MS-RGCN与多种最先进的方法与对几个源和保留数据集进行评估进行了比较。我们的方法的表现优于所有数据集和图像类型的最新方法,包括组织微阵列,整个幻灯片区域和全片图像。通过消融研究,我们测试并显示了MS-RGCN相关设计特征的价值。

Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with late fusion. In order to leverage the multi-magnification information and early fusion with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. To pass the information between different magnification embedding spaces, we define separate message-passing neural networks based on the node and edge type. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源