论文标题
塑造意识的自动区域分区
Shape Aware Automatic Region-of-Interest Subdivisions
论文作者
论文摘要
在各种领域中,对图像的分析涉及定义区域并测量其固有特性。这样的测量包括区域的表面积,曲率,体积,平均灰色和/或颜色尺度等等。此外,有时会执行这些区域的后续细分。然后,这些细分用于以更细的尺度来测量本地信息。但是,通常使用简单的手动或手动编辑方法将区域细分为较小的单位。因此,由此产生的细分可能与所研究区域的实际形状或属性(即网格训练方法)不太吻合,或者是耗时的,并且基于用户主观性(即手动方法)。这项工作中讨论的方法根据区域的一般形状信息提取细分单元。我们介绍了将我们的方法应用于心肌壁嵌套区域的医学图像分析的结果,在该区域中,该细分用于研究心肌灌注的时间和/或空间异质性。当需要使用可变强度或区域内的其他标准将特定区域分离为亚基时,此方法对于创建分区区域(SROI)特别感兴趣。
In a wide variety of fields, analysis of images involves defining a region and measuring its inherent properties. Such measurements include a region's surface area, curvature, volume, average gray and/or color scale, and so on. Furthermore, the subsequent subdivision of these regions is sometimes performed. These subdivisions are then used to measure local information, at even finer scales. However, simple griding or manual editing methods are typically used to subdivide a region into smaller units. The resulting subdivisions can therefore either not relate well to the actual shape or property of the region being studied (i.e., gridding methods), or be time consuming and based on user subjectivity (i.e., manual methods). The method discussed in this work extracts subdivisional units based on a region's general shape information. We present the results of applying our method to the medical image analysis of nested regions-of-interest of myocardial wall, where the subdivisions are used to study temporal and/or spatial heterogeneity of myocardial perfusion. This method is of particular interest for creating subdivision regions-of-interest (SROIs) when no variable intensity or other criteria within a region need be used to separate a particular region into subunits.