论文标题

纳米级的巨大狄拉克准粒子的纳米级视图

Nanoscale view of engineered massive Dirac quasiparticles in lithographic superstructures

论文作者

Jones, Alfred J. H., Gammelgaard, Lene, Sauer, Mikkel O., Biswas, Deepnarayan, Koch, Roland J., Jozwiak, Chris, Rotenberg, Eli, Bostwick, Aaron, Watanabe, Kenji, Taniguchi, Takashi, Dean, Cory R., Jauho, Antti-Pekka, Bøggild, Peter, Pedersen, Thomas G., Jessen, Bjarke S., Ulstrup, Søren

论文摘要

巨大的狄拉克费物是低能电子激发,其特征在于双曲带分散体。它们在几种新兴的物理现象中发挥了核心作用,例如拓扑相变,异常霍尔效应和超导性。这项工作表明,可以通过石墨烯设备中的纳米级孔的纳米级孔的图案上层建筑可以控制巨大的狄拉克费米子。使用纳米级空间分辨率,使用角度分辨光发射光谱系统地可视化它们的频带分散体。发现了具有特征大小的有效质量的线性缩放,并强调了上层建筑的狄拉克性质。原位静电掺杂极大地增强了有效的孔质量,并导致对电子带隙的直接观察,从而导致峰值峰孔的分离(0.64 $ \ pm $ 0.03)eV,通过第一原则计算显示,该计算通过载体诱导的筛选而强烈重新叠加。介绍的方法概述了一种新方法,用于通过直接查看纳米级正版图上层建筑中的结构和电气可调的大规模狄拉克准粒子的指导。

Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device. Their band dispersion is systematically visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution. A linear scaling of effective mass with feature sizes is discovered, underlining the Dirac nature of the superstructures. In situ electrostatic doping dramatically enhances the effective hole mass and leads to the direct observation of an electronic band gap that results in a peak-to-peak band separation of (0.64 $\pm$ 0.03) eV, which is shown via first-principles calculations to be strongly renormalized by carrier-induced screening. The presented methodology outlines a new approach for band structure engineering guided by directly viewing structurally- and electrically-tunable massive Dirac quasiparticles in lithographic superstructures at the nanoscale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源